WATER RESOURCES NEAR DILLINGHAM IN THE BRISTOL BAY AREA, ALASKA

By Roy L. Glass

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 87-4141

Prepared in cooperation with the CITY OF DILLINGHAM

Anchorage, Alaska 1987 DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey Water Resources Division 4230 University Drive Suite 201 Anchorage, Alaska 99508-4664 Copies of this report can be purchased from:

U. S. Geological Survey Books and Open-File Reports Section Bldg. 810 Federal Center Box 25425 Denver, Colorado 80225

CONTENTS

	Page
Abstract	1 1 3 3 8 23 24 25 26
ILLUSTRATIONS	
Figure 1-2. Maps showing: 1. Location of Dillingham and surface-water data-collection sites	9 20
TABLES	
Table 1. Summary of data available for streams in the Dillingham area . 2. Mean monthly and mean annual discharge for selected streams 3. Statistical summary of physical characteristics and major chemical constituents of water from Nushagak and Wood	4 5
Rivers	7 10
wells	13 17
ground water, 1979	22 25

CONVERSION TABLE

For readers who may prefer to use metric (International System) units rather than inch-pound units, the conversion factors for the terms used in this report are listed below:

Multiply inch-pound unit	<u>by</u>	To obtain metric unit
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
acre foot (acre-ft)	1,233	cubic meter (m ³ /s)
square mile (mi ²)	2.590	square kilometer (km²)
gallon (gal)	3.785	liter (L)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m ³ /s)
gallon per minute (gal/min)	0.06308	liter per second (L/s)
gallon per day (gal/d)	0.003785	cubic meter per day (m3/d)
degree Fahrenheit	$^{\circ}C = 5/9 \times (^{\circ}F-32)$	degree Celsius (°C)

Other abbreviations in this report are:

mg/L, milligrams per liter μ g/L, micrograms per liter μ S/cm, microsiemens per centimeter at 25 degrees Celsius

Sea level

In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929) -- a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called "Mean Sea Level of 1929."

By Roy L. Glass

ABSTRACT

Dillingham, the largest community in the Bristol Bay area of Alaska, lies near the confluence of the Wood and Nushagak Rivers. Mean annual discharges for the Wood and Nushagak Rivers are 4,824 and 22,650 cubic feet per second. Flows generally are greatest in May through July and lowest in January through April. The surface waters are a calcium bicarbonate type and have low concentrations of dissolved solids and suspended sediments. Water in the Wood-Nushagak estuary near Dillingham during a high tide in autumn 1985 had specific conductance values ranging from 110 to 3,000 microsiemens per centimeter.

Ground water is the predominant source of public, private, and commercial/industrial supply. Wells range in depth from 20 to 213 feet, yield up to 225 gallons per minute, and have water levels that range from 4 to 76 feet below land surface. All water levels measured during June and July 1986 were above sea level. Samples of ground water contained less than 500 milligrams per liter dissolved solids but concentrations of iron and manganese were as great as 870 and 1,200 micrograms per liter, respectively. Peak water use is in midsummer. In 1986, peak use in the townsite area was between 300,000 and 400,000 gallons per day whereas in previous years it has been as great as 1 million gallons per day.

INTRODUCTION

Dillingham lies at the northern end of Nushagak Bay, a northern extension of Bristol Bay, near the confluence of the Wood and Nushagak Rivers (fig. 1). The city is the regional center for governmental activities and distribution of goods and services to western Bristol Bay area villages. In 1985 Dillingham had a population of about 2,100. Dillingham's predominant economic base is the fishing and fish-processing industries (DOWL Engineers, 1981). Fish-processing facilities use large quantities of water, and almost all the water used in Dillingham comes from wells. During the height of the fish-processing season, late June through early July, wells within 1,500 ft of the Nushagak Bay estuary are heavily pumped. Data are needed to help determine whether increased ground-water pumping will induce saltwater to migrate into freshwater aquifers that are used for public supply.

The purpose of this report is to compile water-resources data that have been collected in the Dillingham area. The study was performed during 1985-86 in cooperation with the City of Dillingham to help determine the availability of water for the area's future needs. The report is not a thorough evaluation of the area's ground- and surface-water resources, but most of the data required for such an evaluation is included here. The scope of the study was limited to: collection

Figure 1. -- Location of Dillingham and surface-water data-collection sites.

Table 1.--Summary of data available for streams in the Dillingham area

				Period of record	f record		
Жар	Station		Streamflow	nflow	Wate	Water quality	
number (fig. 1)	number	Мате	Continuous record	Partial record (crest stage)	Chemical	Water temperature	Sediment
1	15302500	15302500 Nushagak River at Ekwok	1977-		1956; 79-	1979-80	1979-
7	15302900	Moody Creek at Aleknagik	:	1969-	ł	:	i
ო	15303000	Wood River near Aleknagik	1957-70	1972	1958-60; 67	1967-68	1
7	15303010	Silver Salmon Creek near	1985-	1965-67; 69-	1971	;	1970-72
		Aleknagik					
ν.	15303100	East Creek near Dillingham	1973-75	1	;	1973-76	1974-75
9	15303150	Snake River near Dillingham	1973-83	!	1	1974-80	1974

and review of available hydrologic data and drillers' logs; measurement of water levels in wells; and measurement of specific conductance of water in estuaries of Wood and Nushagak Rivers.

HYDROLOGIC SETTING

Climatologically, Dillingham lies in a transition zone that is influenced by both maritime climate and the Arctic climate of interior Alaska. Mean annual temperature is 34.1 °F and mean monthly temperatures are below freezing from November through April, based on data from 1922 through 1979 (Arctic Environmental Information and Data Center, written commun., 1986) and from monthly summaries of the National Oceanic and Atmospheric Administration (1979-85). Average annual precipitation (the total water equivalent of rain, snow, and ice pellets) at Dillingham is 25.6 in. On the average the smallest monthly precipitation (1.26 in.) falls in April, whereas the greatest amount (3.89 in.) falls in August.

Dillingham lies on a moraine- and outwash-mantled lowland with 50- to 100-foot-high hills and wide expanses of wetland and lakes. The area is underlain by a complex sequence of primarily fine-grained glacial, fluvial, and marine sediments that are several hundred feet thick.

SURFACE WATER QUANTITY AND QUALITY

The Nushagak and Wood Rivers are the main rivers in the Dillingham area. Stream-gaging stations (fig. 1) have been maintained by the U.S. Geological Survey on these and other rivers. Table 1 summarizes data available for these streams, and table 2 shows a compilation of streamflow data for continuous-record sites. The streamflow and water-quality data contained in this report and those which are referenced in table 1 are available through data retrieval programs from the Geological Survey. Streamflow data since 1961 and water-quality data since 1964 have also been published annually in a series of reports by the U.S. Geological Survey (1961-85).

Near Dillingham, the Nushagak River has an estimated drainage area of 12,400 mi². At the Survey's stream-gaging station at Ekwok, 40 mi northeast of Dillingham, the Nushagak River has a drainage area of approximately 9,850 mi². The maximum recorded discharge at the gaging station was 89,200 ft³/s, and the minimum discharge was 5,600 ft³/s. During the period October 1977 through September 1985 the Nushagak River at Ekwok had an average discharge of 22,650 ft³/s.

Seventeen miles north-northeast of Dillingham, Wood River flows out of Lake Aleknagik and has a drainage area of approximately $1,110~\rm mi^2$. For the period September 1957 through September 1970, average discharge for Wood River near Aleknagik was $4,824~\rm ft^3/s$, and the maximum discharge was $23,400~\rm ft^3/s$; however, a peak discharge of $25,000~\rm ft^3/s$ occurred during June 1972.

A statistical summary of selected water-quality properties and chemical constituents of water of Nushagak and Wood Rivers is shown in table 3. The waters contain low concentrations of suspended sediment and dissolved solids, and their

NUSHAGAK RIVER AT EKWOK (15302500)

LOCATION.--Lat 59°20'57", long 157°28'23", in SEISE sec. 35, T.9 S., R.49 W., Hydrologic Unit 19040002, on right bank at Ekwok, 0.6 mi upstream from Klutuk Creek, and 40 mi northeast of Dillingham.

DRAINAGE AREA. -- 9,850 mi², approximately.

PERIOD OF RECORD. -- October 1977 to current year.

GAGE.--Nonrecording gage. Altitude of gage is 90 ft above National Geodetic Vertical Datum of 1929 (determined from topographic map). Prior to Apr. 17, 1979, at site 0.4 mi downstream at different datum.

AVERAGE DISCHARGE.--8 years, 22,650 ft³/s, 31.23 in/yr, 16,410,000 acre-ft/yr. (9 years, 22,430 ft³/e, 30.93 in/yr, 16,210,000 acre-ft/yr.)¹

EXTREMES. -- Maximum discharge observed, 89,200 ft³/e, June 8, 1982, gage height, 13.22 ft;
maximum gage height, 14.46 ft, from floodmarke, site and datum then in uee, in April 1979, backwater from ice;
minimum discharge, about 5,600 ft³/s Apr. 21 to May 2, 1985.

MONTHLY AND YEARLY MEAN DISCHARGE, (FT3/S)

WATER YEAR	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	THE YEAR
1978	48630	22700	15580	13190	11250	9903	10530	32320	34350	32980	23150	23670	23290
1979	24130	20350	12840	10380	7107	6484	21900	49050	41520	30920	30280	23720	233 20
1980	31380	36180	15610	11940	10620	10320	25170	50870	58840	52710	37450	28110	30810
1981	29890	17870	8516	7606	8686	11390	20960	45520	37890	30440	30270	23610	22810
1982	20740	16920	10030	8326	11440	11110	10790	42570	51380	38960	25950	51490	250 0 0
1983	33890	12120	8329	7271	7000	6910	7440	35450	36710	24440	20200	13170	17840
1984	23870	17730	16190	13000	13000	12000	12800	26660	24290	22430	17620	14690	17890
1985	13660	9260	7484	6426	6143	5897	5733	24070	57460	37580	36160	32230	20230
a 1986	37640	17580	12840	9829	8171	7774	7500	20890	30340	28810	30410	37560	20860

WOOD RIVER AT ALEKNAGIK (15303000)

LOCATION.--Lat 59°16'30", long 158°35'37", in SEI sec. 30, T.10 S., R.55 W., on left bank at outlet of Lake Aleknagik, 1 mi east of Aleknagik, and 5 mi upstream from Arcana Creek.

DRAINAGE AREA. -- 1,110 mi2, spproximately.

PERIOD OF RECORD. -- September 1957 through October 1970.

GAGE.--Nonrecording gage. Altitude of gage is 20 ft above National Geodetic Vertical Datum of 1929 (determined by altimeter).

Oct. 21, 1965 to Nov. 12, 1968, weter-stage recorder at same site and datum.

AVERAGE DISCHARGE.--13 years, 4,824 ft3/s, 59.02 in/yr, 3,495,000 scre-ft/yr.

EXTREMES.—Maximum discharge, 23,400 ft³/s June 22, 1969, gage height, 13.42 ft, from floodmark; minimum not determined. A peak discharge of 25,000 ft³/s occurred during June 1972, gage height 13.83 ft.

MONTHLY AND YEARLY MEAN DISCHARGE, (FT3/S)

WATER YEAR	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	THE YEAR
1958	6302	8225	4814	2843	2047	1768	1657	5199	13580	13080	7198	5711	6054
1959	6135	3699	2797	1948	1607	1248	1319	4199	9322	6565	4656	4215	3988
1960	6933	3900	259 0	2048	1503	1248	785	5595	10240	7773	7508	5966	4685
1961	5933	4823	3690	2597	1954	1448	1317	5182	10290	6636	6287	6997	4774
1962	6311	3800	2039	1797	1701	1630	1773	5041	12150	8323	4523	5088	4525
1963	5685	4229	3360	3377	3461	3129	2257	5224	10290	7696	4918	8319	5164
1964	6907	3642	2573	1997	1703	1597	1563	2503	11880	9099	5577	6008	4590
1965	6608	4571	3071	2239	1543	1742	2939	4896	18390	9508	5681	9517	5896
1966	9127	3078	1600	1100	880	800	790	990	8923	10210	6882	7146	4315
1967	9856	4966	2072	969	727	700	940	3838	12280	7420	4517	3912	4366
1968	3403	2500	1961	1800	1697	1460	1707	5207	8003	5046	4863	4255	3495
1969	3396	2862	2329	2101	1993	2044	1966	5238	16970	10400	4245	4014	4802
1970	8481	7968	6332	4187	2532	2334	2626	5487	10940	9185	6297	5949	6046

Table 2.--Mean monthly and mean annual discharge for selected streams--Continued

SILVER SALMON CREEK NEAR ALEKNAGIK (15303010)

LOCATION.--Lat 59°13'34", long 158°40'21", in MWł sec 14, T.11 S., R.56 W., Hydrologic unit 19040002, on right bank 4.5 mi from mouth at Wood River and 4 mi southwast of Alaknagik.

DRAINAGE AREA .-- 4.46 mi2.

PERIOD OF RECORD. --Annual maximum, water years 1965-67 and 1969-83. October 1984 to current year.

GAGE, --- Water-stage racorder. Altitude of gaga is 170 ft above National Geodatic Vertical Datum of 1929 (determined from topographic map).

EXTREMES.—Maximum diacharge, 340 ft³/s, Juna 12, 1967, gags haight, 11.85, site than in use; maximum gage haight 12.65 ft, May 18, 1985; minimum discharge recorded, 1.3 ft³/s, Apr. 24, 25, 1985, but may have been less during the period, Nov. 11 to Dec. 31, 1984.

MONTHLY AND YEARLY MEAN DISCHARGE, (FT3/S)

WATER YEAR	ост	NOA	DEC	JAN	PEB	MAR	APR	YAK	אטע	JUL	AUG	SEP	THE YEAR
1985 1986	4.77 31.2	1.62 12.8			2.50 2.81		1.83	20.8 9.45	59.6 23.1		18.1 14.8		11.9

EAST CREEK NEAR DILLINGHAM (15303100)

LOCATION.--Lat 59°11'39", long 158°49'17", in NEISWI sec. 26, T.11 S., R.57 W., on right bank 0.5 mi upstream from mouth at Lake Nunavaugaluk, and 15 mi northwest of Dillingham.

DRAINAGE AREA, -- 2.12 mi2. A significantly larger area contributes to ground-water base flow.

PERIOD OF RECORD .-- August 1973 to September 30, 1975.

GAGE. -- Water-stage recorder. Altitude of gage is 90 ft above National Gaodetic Vertical Datum of 1929 (determined from topographic map).

EXTREMES. --Maximum discharge, 41 ft³/s, Sept. 17, 1975, gage height, 5.94 ft; maximum gage haight, 6.10 ft, Nov. 11, 1974, backwater from ice; minimum daily discharge, 7 ft³/s, Mar. 21 to Apr. 16, 1974 and Feb. 21 to Apr. 25, 1975.

MONTHLY AND YEARLY MEAN DISCHARGE, (FT3/S)

WATER YEAR	ОСТ	NOA	DEC	Jan	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	THE YEAR
1973 1974	22.4	20.0	13.5	11.2	8.89	7.65	7.67	15.7	21.1	18.5	18.3 16.1		15.0
1975	22.1	18.0	13.9	9.97	7.71	7.00	7.20	19.8	28.4	22.4	15.3	20.0	16.0

SNAKE RIVER NEAR DILLINGHAM (15303150)

LOCATION.--Lat 59°08'54", long 158°53'14", in NW1SW1 sac. 9, T.12S., R.57W., Hydrologic Unit 19040002, on right bank at outlat of Laka Nunavaugaluk, 15 mi northwest of Dillingham.

DRAINAGE AREA. -- 113 m12.

PERIOD OF RECORD .-- August 1973 to September 30, 1983.

GAGE. -- Water-stage recorder. Altitude of gage is 34 ft above National Gaodetic Vertical Datum of 1929 (determined from topographic map).

AVERAGE DISCHARGE.--10 years, \$45 ft3/s, 65.50 in/yr, 394,900 acre-ft/yr.

EXTREMES. --Maximum discharge, 2,470 ft³/s Juna 17, 1977, gage haight, 6.81 ft; minimum discharge, about 70 ft³/s Jan. 31 and Feb. 2, 1977.

MONTHLY AND YEARLY MEAN DISCHARGE, (FT3/S)

WATER YEAR	ост	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	THE YEAR
1973											438	645	
1974	570	445	304	240	143	117	202	660	868	435	274	428	392
1975	595	508	247	168	200	180	166	596	1459	844	341	681	499
1976	804	538	367	261	200	134	95.2	306	977	429	225	620	413
1977	761	419	329	366	365	372	284	506	1838	927	1248	613	670
1978	470	257	119	125	119	144	247	1004	911	794	472	871	463
1979	648	810	732	619	325	257	560	1466	1065	520	853	558	704
1980	1037	1108	489	293	263	260	279	1292	1432	883	449	369	680
1981	\$45	424	189	193	229	499	296	970	735	368	624	592	473
1982	319	395	265	201	239	257	260	787	1734	1130	716	1292	633
1983	1044	636	484	404	322	208	198	1092	862	450	357	239	527

a Preliminary data.

Table 3.--Statistical summary of physical characteristics and major chemical constituents of water from Nushagak and Wood Rivers

[µS/cm, microsiemens per centimeter at 25° Celsius; mg/L, milligrams per liter; µg/L, micrograms per liter]

Substance or property analyzed and unit	Number of analyses	Mean	Minimum value	Maximum value
ushagak River at Ekwok (15302500)				_
Specific conductance (µS/cm)	47	51	27	65
pH (standard units)	45	a 7.0	5.7	7.7
Temperature (degrees Celsius)	35	6.7	.0	16.3
Calcium, dissolved (mg/L as Ca)	51	6.6	3.9	9.6
Magnesium, dissolved (mg/L as Mg)	51	1.4	1.0	2.4
Sodium, dissolved (mg/L as Na)	51	1.7	1.0	4.7
Potassium, dissolved (mg/L as K)	49	.36	< .1	.6
Alkalinity, field (mg/L as CaCO ₂)	32	20	14	26
Sulfate, dissolved (mg/L as SO,)	51	4.3	.8	8.8
Chloride, dissolved (mg/L as CI)	50	.87	< .1	3.5
Fluoride, dissolved (mg/L as F)	49	.07	< 1.1	.2
Silica, dissolved (mg/L as SiO ₂)	51	7.1	5.1	11
Solids, sum of constituents, dissolved (mg/L)		35	26	46
Nitrogen, NO ₂ +NO ₂ dissolved (mg/L as N)	31	.11	< .1	.3
Phosphorus, dissolved (mg/L as P)	35	.015	< .01	.04
Iron, dissolved (µg/L as Fe)	26	160	71	280
Manganese, dissolved (µg/L as Mn)	26	9.3	1.0	21
Sediment, suspended (mg/L)	30	13	1.0	46
ood River near Aleknagik (15303000)				
Specific conductance (µS/cm)	7	41	40	44
pH (standard units)	7	a6.9	6.4	7.3
Temperature (degrees Celsius)	5	7.3	1.0	10.5
Calcium, dissolved (mg/L as Ca)	7	5.4	4.8	6.4
Magnesium, dissolved (mg/L as Mg)	7	1.5	< .1	5.0
Sodium, dissolved (mg/L as Na)	7	1.1	1.0	1.2
Potassium, dissolved (mg/L as K)	7	.14	.1	•2
Alkalinity, field (mg/L as CaCO2)	7	14	11	16
Sulfate, dissolved (mg/L as SO,)	7	4.3	2.0	8.0
Chloride, dissolved (mg/L as Cl)	7	2.6	< .1	9.0
Fluoride, dissolved (mg/L as F)	7	.01	< .1	.1
Silica, dissolved (mg/L as SiO ₂)	7	4.2	3.3	5.2
Solids, sum of constituents, dissolved (mg/L)		28	23	43
Sediment, suspended (mg/L)	, . 3	4.0	2.0	5.0

a Median value

principal cation and anion are calcium and bicarbonate (as indicated by "alkalinity").

Measurements of specific conductance of water in the Nushagak and Wood Rivers were made to determine the salinity of estuary water near Dillingham. Measurements were made on September 25, 1985 at a tide of approximately 15 ft. (For reference, mean lower low water is 0 ft and mean high water is 18 ft.) Water samples were collected near the water's surface and near the bottom. The specific conductance of water ranged from 110 to 135 uS/cm in the Wood River at Snag Point dock and from 1,330 to 3,000 uS/cm in the Nushagak River; in Scandinavian Creek at Dillingham's small-boat harbor it was 300 uS/cm (fig. 2). These values indicate a slight effect by salinity from tides in the channel of the Nushagak River at the prevailing flow conditions in late September. High tides in spring, when streamflow is low, would increase salinity to a much greater value in the estuary.

GROUND WATER AVAILABILITY AND QUALITY

An estimated 400 to 500 wells have been drilled in the Dillingham area. The locations of wells for which information is available are shown in figure 2. A summary of available well data is included in table 4, and lithologic descriptions from drillers' logs for some of these wells are presented in table 5. Drillers' logs for most of the wells listed in table 4 are on file at the Geological Survey office in Anchorage, Alaska.

Wells range in depth from 20 to 213 feet and yield from 5 to 225 gal/min. Well-yield information was determined by drillers by pumping or bailing for short periods, generally from 0.25 to 2 hours, and may not reflect the long-term capacity of the aquifer to supply water.

Water levels in well PHS No. 2 or SC01305521ABBD1 001 (see explanation of well-numbering system in table 4) have been monitored intermittently with a strip-chart recorder since 1978. Water levels in this 88-foot deep well have ranged from 68.3 to 75.9 ft below land surface (about 9.0 to 16.6 ft above sea level). Continuous water-level records for this well are not available. Water-level values for this well reported in table 6 and figure 3 are the highest water levels (lowest numerical values) for the 5th, 10th, 15th, 20th, 25th, and last day (end) of each month (EOM). Water-level values for all other wells in this report are values that were measured by using a steel tape; they are instantaneous values and may not be the highest water level for that day.

Infiltration of rain, snowmelt, and streamflow recharges the aquifers that are tapped by wells to yield water for domestic and public supplies. Depths to water in wells ranged from about 4 to 76 ft. Natural seasonal fluctuations of water levels are less than 6 ft. The hydrograph of water levels in well PHS No. 2 (fig. 3) shows that in most years there are two periods of low water levels. Water levels are lowest during June and July when ground-water pumpage is greatest, and fish processing is most intensive. At times, water levels also are low during winter, possibly because of seasonal decrease in the amount of water that recharges the aquifer. Water levels in well PHS No. 2 fluctuate more widely than in most other wells in the area because it is only about 10 ft from a public-supply well.

Figure 2.—Water-well locations in the Dillingham area, and areal distribution of specific conductance of water in the Wood-Nushagak estuary, September 25, 1985.

Table 4.--Summary of data for wells and springs [See explanation following table]

Well number	Map number	Owner	Locel, subdivision, or survey name	Year drilled	tude		Well depth (feet)	Water level (feet below land surfece)	Yield (gallon per minute)	Other dete in this report
C01305508DCBC		WASKEY ROAD 8 PLEX SHEETS RON	BERNIE LO2 WOOD RIVER LO6	1985 1978	75 110	40 74	40 74	21 45	20 11	
CO 1305509AADD: CO 1305509ADAA		LANER JOHN KAWAGLIA WASSILLI E	KALLENBERGS LO4 BUCKSHOT EST LO2	1981 1979	100 125	134 154	134 154	72	8	
01305509ADAC		SNYDER DAVE	BUCKSROT EST LOS		125	75	75			
C01305509ADAC		CLINE DON	BUCKSHOT EST LO6		125	35	35			
CO1305509CCCB	004	TORRISI FRED	BLACKIES KNOB LO1	1981	112	70	70		15	
CO1305510BABC		DRAGNET	USS 2488		25	201	201			
CO1305510BABC		DRAGNET	USS 2488	1983	25	85	85		13	~
CO1305510BBAA CO1305510BBCC		WOOD RIVER COMUNITY BAIR NORMAN	SPRING USS 4972 LOSA	1977	20 105	165	156	76	1	
C01305516CDAB	1 001	DILLINGHAM CITY OF	PHS NO. 3	1977	47.56	70	70	21.8		LOG, WL
CO1305516CDAC		TUCKER TOM	USS 4974 LO1	1978	50	65	65	15	10	
C01305516CDCD		DILLINGRAM CITY OF	ELEMENTARY SCHOOL	1983	55.52		70	36	40	LOG, WL
CO1305516DCCC		THOMASON FRANK	USS 2732 LO3BO3	1977	75	73.5	73.5	57		
CO1305516CDDD	1 005	DILLINGRAM CITY OF	COURT HOUSE		72.92	90	90		70	WL
CO1305517ABAA		DOLEMAN HARRY	USS 4973 LO5	1976	75	26	26	17	10	
CO1305517ABAB		RUSSIAN CHURCH NAT BANK OF AK	HOOD STUPP TOT	1977	100	47.2 69.5	47.2	47		
CO1305517ABBB CO1305517ABBB		JACKSON DAVE	WOOD RIVER LO2 WOOD RIVER LO3	19//	105 112	65	69.5 65	47		
C01305517CCAC		NELSON ANDREW	USS 3643 L14	1978	80	70	70	35	15	
C01305517CCAD	1 005	PLEIER CARL	USS 3643 L14	1977	80	47.7	47.7	32.3		
C01305517CCCA		BRANNON PAUL G		1976	80	89.2	89.2			
C01305517CCCB		BENEDICT CORY	SUTHERLAND LOC	1002	75 75	45	45	26		
CO1305517CCCD CO1305517CCDA		SUTHERLAND PAUL BRISTOL BAY NTV CORP	SUTHERLAND LOA	1983 1975	75 80	37 57.7	37 57.7	26 33	10	
CO1305517CCDD		TUBBS CLIFF	BRASWELL TROP		75	35	35			
C01305517CDCA	1 003	TIMMERMAN JIM	USS 3643 L29	1977	80	42	42	33		LOG, Q
C01305517CDCA	2 003	CEDAR HOMES	CEDAR SUB	1981	80	49	49	36		
CO1305518DCDA		WIENAIR DILLINGH	USS 5688 TRO3	1976	70	87	87			QW
SC01305518DCDC SC01305518DDCB		SOUTHWEST AIR ARMSTRONG AIR SERV	USS 5688 LO3AB500A USS 5688 LO4B500A	1977	87 80	60 37	60 37	26		
C01305518DDCC		BINGMAN PHIL		1976	80	40	40	27	10	
C01305519AAA	1 007	BUELL BILL	BRASWELL TROK	1984	S 7	40	40			
C01305519AADC		GLADDEN DAVID	BRASWELL L24A	1978	60	75	75		5	
SC01305519ABBA		YUTE	USS 5688 LOIDB500A		87	80	80			
CO1305519ABCD		MURIC STEVE	USS 3699 LO3	1976	75	116	116	39		
CO1305519ADCA		NUNN LANCE	USS 5688 LO1	1977	77 87	98 52	98 51.3	36	15	
SCO1305519BRDA SCO1305519BBDA		JONES FANNIE HCGILL KARLA	MISSION LO2	1979 1979	87	40	40	37.3 30		
CO1305519BBDA		THORSON JIM	USS 3185	1983	87	53	53	38	10	
SC01305519BBDB	1 010	MORSE JACK NO1	USS 3699 LO2	1983	50	33	33	23	10	
SC01305519BBDB		MORSE JACK NO2	USS 3699 LO2	1953	50	33	33	20	10	
SC01305519BCBD		BENNIS J.D.	BENNIS LOGA & LOGE		37 37	38 31	38 30	20	10	
SCO1305519BCBD SCO1305519CABB		BENNIS J.D. CLARK MARTIN	BENNIS LOGA & LOGE SAMPSON LIAF	1977	55	73.7	71	32	15	
C01305519CABE		CLARK HARTIN	SAMPSON L14F1		55	59	59			
SC01305519CABE	3 004	CLARK MARTIN	SAMPSON L14F2		55	158	158			
SC01305519CACE		CHRISTENSE NICK	SAMPSON LIAD	1977	55 75	46	46	12	10	
SC01305519CBAA SC01305519CBBA		MAVES ROGER SMITH KENT	SHANNONS L14A MAVES LO1	1976	75 75	52 41	39 41			
CO1305519CBBI	1 013	WILSONS VERNER	USS 4980 L15	1979	87	40	40	23		
CO1305519CCDI	1 014	SHADE MARY	USS 4980 L20		87	25	25			
CO1305520ADC		BALL BROTHERS	USS 4980 L16		25	37	36			
SC01305520ADC	_	BALL BROTHERS	USS 4980 L16		25	37	36			
SC01305520BBB/		SAGMOEN OLE		1976	80 87	37	36.7	•		
SCO1305520BBBI SCO1305520BBC		NICHOLSON BOB KNUTSEN GUSTY	BRASWELL TROD	1983 1976	75	42 84	42 84			
C01305521ABAC	1 002	DILLINGHAM CITY OF	CITY NO. 1		83.72	128	128	64	20	LOG, VI
CO1305521ABBI		DILLINGRAM CITY OF	PHS NO. 2	1977	84.93		88	75.2	48	LOG, WI
CO1305521ABBI	2 001	DILLINGHAM CITY OF	MAIN	1975	80	91	85	69	225	LOG
CO1305521ABBI		DILLINGHAM CITY OF	ABANDONED	1977	80	85	85			1.0G
SCO1305521BAAI BCO1305521BABI		DILLINGHAM CITY OF DILLINGHAM CITY OF	CITY NO. 2, HIGH S PHS NO. 1	SC 1959 1977	75 35	83 130	83 118	43	15	TOC
SC01305521BABI SC01305521BABI		DILLINGHAM CITY OF	CITY NO. 3	1974	35 34.78		115	12.5	15 100	LOG WL,
SC01305521BAC		PETER PAN SEAFOODS		1978	35	140	140	18	150	LUG,WL,
SC01305521BAC	1 010	PETER PAN SEAFOODS	OLD WELL	1927	35	213	213	15		QW
SC01305521BBA1		PETER PAN SEAFOODS	TENT CITY	1977	35	105	105	7		
SC01305521BBC		PETER PAN SEAFOODS	BOAT HARBOR	1977	27.79		190	6.41		LOG, WI
SC01305521BDA1		SEA INN BAR PETER PAN	USS 2732 LO2B31 USS 0155	1976	60 37	111 131	108 131	30	10	
										_
CO1305521BDB CO1305530BBA		HANSEN OLAF	OLAFS ACRES L21	1979	37	110	110			

Table 4.--Summary of data for wells and springs--Continued [See explanation following table]

CO1305602BADDI CO1305602BCAADI CO1305602BCBADI CO1305602BDBBI CO1305602BDBBI CO1305602BDBBI CO1305602BDBBI CO1305602BDBBI CO1305610ADAADI CO1305611BBAABI CO1305611BBABBI CO1305611BBCBI CO1305611BBCBI CO1305611BBCBI	1 002 1 003 1 004 2 004 2 005 3 006 1 007 1 008 1 001 1 002 1 002 2 002	NELSON LARS HARTSHORN JIM PARKINS JACK CHRISTENSEN RAY RITTY GORDON KING BOB TRASK JUDI HOATOS HEYER CHUCK TENNYSON B HEYANO ROBERT DAVIDSON	LARS NELSON LO1BO3 LARS NELSON LO4BO2 STRADAVARIUS LO7A LARS NELSON LO5BO2 STRADAVARIUS LO7B STRADAVARIUS LO7B STRADAVARIUS LO6B AHKLUN VW EST LO8 AHKLUN VW EST LO8 AHKLUN VW EST LO9B AHKLUN VW EST LO9B AHKLUN VW EST LO	1983 	162 150 162 150 150 150	69 60 46 58 52 42	69 60 46 58 52	44 -	15	
CO1305602BDAD1 CO1305602BDBB1 CO1305602BDBB1 CO1305602BDBB1 CO1305602CCBB1 CO1305602CCCCI CO1305602CCCCI CO1305602CCCCI CO1305610ADAD1 CO1305611BBAD1 CO1305611BBAD1 CO1305611BBAD1 CO1305611BBAD1 CO1305611BBAD1 CO1305611BBAD1 CO1305611BBAD1	003 004 004 005 005 007 008 001 002 1 002 1 002 1 002	PARKINS JACK CHRISTENSEN RAY RITTY GORDON KING BOB TRASK JUDI MOATOS MEYER CHUCK TENNYSON B HEYANO ROBERT DAVIDSON	STRADAVARIUS LO7A LARS NELSON LO5BO2 LARS NELSON LO5BO2 STRADAVARIUS LO7B STRADAVARIUS LO7B STRADAVARIUS LO6B AHKLUN VW EST LO8 AHKLUN VW EST LO8 AHKLUN VW EST LO9B	1983	162 150 150 150 150	46 58 52	46 58 52			
CO1305602BDB1 CO1305602BDB2 CO1305602BDDA1 CO1305602BDDA1 CO1305602CCB1 CO1305602CCB1 CO1305602CCB1 CO1305610DAAA1 CO1305610DAAA1 CO1305611BBAA1 CO1305611BBAA1 CO1305611BBAA1 CO1305611BBAA1 CO1305611BBAA1 CO1305611BBAA1	004 004 005 006 007 008 001 002 1 002 1 002 2 002 1 003	CHRISTENSEN RAY RITTY CORDON KING BOB TRASK JUDI HOATOS MEYER CHUCK TENNYSON B HEYANO ROBERT DAVIDSON	LARS NELSON LO6B02 LARS NELSON LO5B02 STRADAVARIUS LO6B STRADAVARIUS LO6B AHKLUN VW EST L10 AHKLUN VW EST L08 AHKLUN VW EST L08	 1983	150 150 150 150	58 52	58 52			
CO1305602BDBA2 CO1305602BDDBA CO1305602BDBA3 CO1305602CCB1 CO1305610ADAA1 CO1305610BAAA1 CO1305611BBAA1 CO1305611BBAD1 CO1305611BBAD1 CO1305611BBAD1 CO1305611BBAD1 CO1305611BBAD1 CO1305611BBCD1 CO1305611BBCD1 CO1305611BBCD1	2 004 3 005 4 006 5 007 6 008 1 001 6 002 1 002 2 002 1 003	RITTY GORDON KING BOB TRASK JUDI HOATOS MEYER CHUCK TENNYSON B HEYANO ROBERT DAVIDSON	LARS NELSON LO5BO2 STRADAVARIUS LO7B STRADAVARIUS LO6B AHKLUN VW EST L10 AHKLUN VW EST L08	1983	150 150 150	52	52			
CO1305602BDDBA CO1305602CCBB1 CO1305602CCC1 CO1305610ADAA1 CO1305610ADAA1 CO1305611BBAA1 CO1305611BBAA2 CO1305611BBAA1 CO1305611BBAA1 CO1305611BBAA1 CO1305611BBAA1 CO1305611BBAA1	005 006 007 008 001 002 1 002 1 002 2 002 1 003	KING BOB TRASK JUDI MOATOS MEYER CHUCK TENNYSON B HEYANO ROBERT DAVIDSON	STRADAVARIUS LO78 STRADAVARIUS LO68 AHKLUN VW EST L10 AHKLUN VW EST L08 AHKLUN VW EST L098	 1983	150 150					
CO1305602BDBA CO1305602CCB1 CO1305602CCCC1 CO1305610AAA1 CO1305610BAAA1 CO1305611BBAA1 CO1305611BBAA1 CO1305611BBAD1 CO1305611BBCC1 CO1305611BBCC1	006 007 008 008 001 002 1 002 1 002 2 002 1 003	TRASK JUDI MOATOS MEYER CHUCK TENNYSON B HEYANO ROBERT DAVIDSON	STRADAVARIUS LO68 AHKLUN VW EST L10 AHKLUN VW EST L08 AHKLUN VW EST L098	1983	150	47				
CO1305602CCBB1 CO1305602CCCCI CO1305610AAAAI CO1305610BAAAI CO1305611BBAAI CO1305611BBAAI CO1305611BBCBI CO1305611BBCBI CO1305611BBCBI	1 007 1 008 1 001 1 002 1 002 2 002 1 003	MOATOS MEYER CHUCK TENNYSON B HEYANO ROBERT DAVIDSON	AHKLUN VW EST L10 AHKLUN VW EST L08 AHKLUN VW EST L09B	1983		41	42 41			
CO1305602CCCC1 CO1305610ADAA1 CO1305610BAAA1 CO1305611BBAA1 CO1305611BBAA1 CO1305611BBAD1 CO1305611BBCD1 CO1305611BBCC1 CO1305611BCCC1	1 008 1 001 1 002 1 002 2 002 1 003	MEYER CHUCK TENNYSON B HEYANO ROBERT DAVIDSON	AHKLUN VW EST LOS AHKLUN VW EST LOSB		150	37	37	26	10	
CO1305610DAAD1 CO1305611BBAA1 CO1305611BBAA2 CO1305611BBAD1 CO1305611BBCD1 CO1305611BBCC1 CO1305611BCCB1	1 002 1 002 2 002 1 003	HEYANO ROBERT DAVIDSON			137	32	32	15		
CO1305611BBAA2 CO1305611BBAD1 CO1305611BBCB1 CO1305611BBCCI CO1305611BCBBI	2 002 1 003				87 87	48 20	48 20			=
CO1305611BBAA2 CO1305611BBAD1 CO1305611BBCB1 CO1305611BBCCI CO1305611BCBBI	2 002 1 003		AHKLUN VW EST LOI	1983	137	51	51	38	15	
SCO1305611BBAD1 SCO1305611BBCB1 SCO1305611BBCC1 SCO1305611BCBB1	1 003	INGRAM BILL, JR.	AHKLUN VW EST LO2	1983	137	51	51	36	12	
SC01305611BBCB1 SC01305611BBCC1 SC01305611BCBB1		HALL MARK	AHKLUN VW EST LO3		137	38	38			
SC01305611BBCC1 SC01305611BCBB1		STEPHENS BILL	AHKLUN VW EST LOSE	01 1983	125	50	50	20	8	
	1 005	DIESETH SCOTT	AHKLUN VW EST LOSA		125	50	50			
CO1305611CBDD1		FLYNN JACK	AHKLUN VW EST LOSE		112	39	39			
	1 0 01	BARNES HARRY	DSS 4982 L11	1977	110	. 42	42	23		
CO1305613BCBC1 CO1305613BCCB1		LADD COUGHSIENHAUER	NERKA IV LO4BO4 NERKA IV L14BO1		62 87	30 35	30 35			
C01305613BCDB1		FISHER	NERKA IV LIGHUI	1983	75	30	30	19		
CO1305613BCDD1		LAYLAND	NERKA IV LO9BO4	1983	75 50	34	34	20	13	
CO 1 305613CABC1		BINGMAN LESTER	NERKA V LO2	1985	50	40	35			
C01305613CACB1		FOX ALICE	NERKA VI	1985	62	42	40			
CO1305613CBBC1		SATTERFIELD JAY	NERKA II LOSBO2	1982	87	40	40		10	
CO1305613CBBC2		SATTERFIELD JAY	NERKA II LOBBO2	1984	87	31	31	15	8	
CO1305613CBBC3		TAYLOR KEN	NERKA II LO7BO2		87	49	49			
CO1305613CBBC4	4 007	COLLINS	NERKA II LOSBO1	1981	87	40	40	25	10	
CO1305613CBBD1		ISAACS GORDY	NERKA LO6	1981	87	50	50	30	15	
CO1305613CBBD2		BUCHER WESLEY	NERKA II LO9BO2	1982	87	40	40	24	10	
CO1305613CBDA1		TAYLOR JOHN	NERKA LOI	1983	87	40	40	28	8	
CO1305613CBDA2		ROBERTS FREEMAN	NERKA L12		87	27	27			
C01305613CCBC		FIREHALL	VOLUNTEER LO2	1985	62	42	40			
SC01305613CCDB1 SC01305613CCDB2		JONES WARD JONES WARD	T.J. LO1 T.J.	1984	75 75	40 38	40	19	8	
CO1305613CDCD1		MINARD	FIREWEED L12		37	30	38 30			
C01305613CDCD		IMDIEKE ROY	FIREWEED LO9		37	35	35			
SC01305613CDDC1		STOUT	FIREWEED LOS	1983	37	30	30		7	
SC01305613CDDD1		DAVISON BILL	FIREWEED LOG		37	130	65			
SC01305613DCCC		TENNYSON RICK	FIREWEED LO4		37	35	35			
CO1305614AABB		OCONNELL DANIEL	THERESA LOSA	1983	87	31	31	18	8	
SC01305614ABAC		MADDOX SUE	THERESA TERR L17A	1983	100	32	32	19		
SC01305614ABBD		CHRISTIANS BOB	UCC 4003 *00 154	1978	100	55	55	31		
SC01305614ABCB		ANDERSON ANDY	USS 4982 LO9-15A	1976	100	40	40	26		
SC01305614ABCD: SC01305614ABCD:		LUCKHURST VERN KOUTCHAK RUBY	USS 4982 LO9-1A COHO LO8BO1	1976	100 112	35 30	35 30	22		
SC01305614ABDC		OBRIEN DAN	USS 4982 LO9-4A	1976	105	36.7	36.7			
CO1305614ABDC		RYAN GEORGE	THERESA TERR LOSA		112	32	32			
SC01305614ACAB		ROBINSON LES	NAPAQ LOIBOI	1983	112	40	40	27	8	
CO1305614ACAB		MULKEIT FRED	NAPAQ LO2BO2		112	36	36			
CO1305614ACBD	1 013	IRKE KEITH	COHO LOZBO2	1982	87	34	34		10	
SC01305614ADBC	1 014	NELSON CARL	NAPAQ LOSBO3	1951	112	55	55	35		
SC01305614ADDB		SORENSON JOHN	NERKA II LO2BO3	1984	100	35	35	32	10	
CO1305614ADDC		HILL	NERKA II LO2BO2		100	38	38			
CO1305614ADDD		WIGHTMAN ROBERT	NERKA II LO4BOl	1981	87	40	40,	15	10	
CO1305614BAAA		WARD JIM	THERESA TERR LOIB		112	35	35			
SC01305614BAAD		KROPOFF PAUL	USS 4982 L9-10A	1976	105	42	42	32		
SC01305614BAAD		DARDEN DON	USS 4982 L9-11A	1976	105	41	41	32		LOG, Q
SC01305614BAAD		NELSON MIKE	USS 4982 L9-13A	1976	105	40	40	27	5	
SC01305614CAAA SC01305614CAAA		HIRATSUKA FRANK	USS 4982 LO5 USS 4982 LO5	1976	105	42	42	22		
SC01305614CAAA SC01305614DAAA		HIRATSUKA FRANK REYNOLDS MARK	NERKA II LOSBOI	1977	105 87	30 40	23	12	14	
SC01305614DAAA		NBA HOUSE	NERKA II LUSBUI NERKA II LO6BO2	1982	87 87	80	40 80	15	10	
SC01305614DBAD		DUNCAN BILL	DUNCAN ACRES LOI		37	40	40			
SC01305614DBBA		DUNCAN BILL	USS 4982 LO3	1976	60	30	30	16		
SC01305614DBBB		ABRAMS MEL	SHANNON LO3	1976	75	35	33	21		LOG, Q
SC01305614DBBB		MURPHY RICK	SHANNON LOG	1977	75	30	30	16		106, Q
SC01305614DBDA		MULLINS CONSTR	USS 4982 LO3	1977	100	42	42	17		
SC01305624BABA		HOLSTROM	FIREWEED L10	1983	50	40	40	29.5	s	
SC01305624BABB		CHERRY BEN	FIREWEED L14	1982	50	31	31	15	12	
SC01305624BABB		MANARD MAC	FIREWEED L11		50	32	32			
SC01305624BACB		OBERHAULSER CHRIS	SAMPSON EST L15		50	46	46			
SC01305624BACC		SAMPSON RODNEY	SAMPSON EST LO3		50	40	40			
SC01305624BACC		MERTON	SAMPSON EST L17	1983	50	30	30	17	10	
SC01305624BBAD		SCHLEGAL TOM	SAMPSON EST LO9		75	33	33			
SC01305624BBAD		BROWN CARY	SAMPSON EST L10		75	40	40	-,-	,	
SC01305624BBDA		LAW KEN	SAMPSON EST LO7		87	30	30			
SCO1305624BBDA SCO1305624BBDB		FOY STEVE SIPPERLY ANDY	SAMPSON EST LOB SAMPSON EST II L1		87 87	40 .32	40 32			

Table 4.—Summary of data for wells and springs—Continued [See explanation following table]

Well number	Map number	Owner	Local, subdivision, or survey name	Year drilled	Alti- tude (feet)	Hole depth (feet)	Well depth (feet)	Water level (feet below land surface)	Yield (gallon per minute)	Other data in this report
C01305624BBDB	2 007	WENTZ MAREEN	SAMPSON EST II L20		87	37	37			
CO1305624BBDC	1 008	PETTERSON STEVE	SAMPSON EST LO6	1984	87	30	30	18	10	
CO1305624BDBB	1 009	NOVAK JOHN	SAMPSON EST LO4		87	30	30			
CO1305624BDBB	2 009	WREN STEVE	WREN LO1	1984	87	30	30	21	10	
C01305624DAAA	1 010	SIFSOF VICTOR	USS 4980 L29A		75	38	38			
C01305624DAAB	1 011	BACKFORD GERTRUDE	BACKFORD LO9	1979	75	42	42	26		
CO1305624DAAB	2 011	SUTTLES ERIC	BACKFORD LO9		75	36	36			
C01305624DAAB	3 011	SUTTLES ERIC	BACKFORD LO9		75	48	48			
CO1305624DCDA	1 012	BURKHART RUSS	USS 6165		37	116	116			
C01305625AAAC	1 002	MAHRT DAVE	BEAVER HOUSE LO3		37	98	98			
CO1305625ABAD	1 001	LECLAIR DON	USS 4980 L12	1976	80	120	118	50		
CO1305636ACBE	1 003	NICHOLSEN JOHN	USS 5755 LO1	1979	62	51	51			
CO1305636ACBE	2 003	NICHOLSEN WILLIAM	USS 5755 LO2		62	140	140			
CO1305636ACDD	1 004	STAMBAUGH	PETE HANSEN LO4		75	46	46			
CO1305636ADCC	1 005	MICHOLSON PAUL	PETE HANSEN LOS		75	40	40			
CO1305636BDDD	1 001	TIMMERMAN JOHN	USS 4985 L15	1977	50	47.2	47.2	18		LOG, (
C01305636DCDA	1 006	SASSA WALLONA	S & W L14C	1979	62	54	54	30		

EXPLANATION OF TABLE HEADINGS

WELL NUMBER: The wall-numbering system used in this report is the Alaska Water Resources Division's local well-numbering system and is based on the rectangular subdivision of public lands. The first two letters indicate the well's position in reference to a base and meridian (first letter) and the quadrant formed by the intersection of the base line and the principal meridian (second letter), lettered counter-clockwise from the northeast corner:

В	A
C	D

In this report, all wells are in the Seward base and meridian (S) and in its southwestern quadrant (C). The first three digits indicate the township in which the well is located, the next three digits the range, and the last two digits the section. For example, a well numbered SC01305508DCCB1 is located in township 13 south, range 55 west, section 8. Letters following the section number indicate further subdivision: the quarter section, the quarter-quarter section, and so forth to the fourth section subdivision. Like the quadrants formed by the base and meridian, each succeeding subdivision is lettered counter-clockwise from the northeast corner. Well SC01305508DCCB1 is thus located in the northwest quarter (B) of the southwest quarter (C) of the aouthwest quarter (C) of section 8.

SC01305508DCCB1 001

MAP NUMBER: Map number refers to the sequential listing of wells within a square-mile section (see figure 2 for map locations). Thus, well SC01305508DCCB1 001 was the first well recorded in section 8.

OWNER: Person, business, or agency reaponsible for the well at the time the well information was reported or collected.

LOCAL, SUBDIVISION, OR SURVEY NAME: This entry may further assist one in locating a well. Lot and block numbers may also be listed in this column, for example, lot 2 block 31 is listed as "LO2B31".

YEAR DRILLED: Date driller recorded the well log, usually when the last test was made or well reached final depth.

ALTITUDE: Altitudes of land surface at wells were determined from topographic maps that have 25-foot contour intervals or by a level survey which used reference marks on fire hydrants that wera previously surveyed for the City of Dillingham. Altitudes are in feet above sea level.

HOLE AND WELL DEPTHS: Depth of hole and well, from land surface, as reported by the driller or owner. It is the distance from land surface at the well to the bottom of the casing or screen. Most domestic wells in this area are completed with open-ended casings that are 5 or 6 in. in diameter.

WATER LEVEL: Depth to water from land surface, in feet, in the completed well. Most entries were reported by drillers or owners and have not been field checked. All water levels are assumed to be a static water surface, that is, a natural level not influenced by any recent withdrawal of water from the well.

YIELD: The rate, in gallons per minute, that that water has been withdrawn from the well during a short test period. Usually this testing is accomplished by the well driller by pumping or bailing for 0.25 to 2 hours. Caution: this entry often does not reflect the long-term capacity of the well to supply water and commonly either overestimates or underestimates the full potential of the aquifer at that location.

OTHER DATA IN THIS REPORT:

- LOG, lithologic descriptions from driller's log are shown in table 5.

 Most wells listed in table 4 have a driller's log on file at
 the U.S. Geological Survey Water Resources Division's
 offica in Anchorage, Alaska.

 WL, water levels measured by U.S. Geological Survey personnel are
- WL, water levels measured by U.S. Geological Survey personnel are shown in table 6.
- QW, water quality collected by U.S. Geological Survey personnel are shown in table 7.

Table 5.--Lithologic descriptions from drillers' logs of selected wells

Depth below land surface,

63 to 70

in feet

Lithologic description

Well SC01305516CDAB1 001, City of Dillingham PHS No. 3 [Log by U.S. Public Health Service]

0 to 2	Muskeg
2 to 9	Silty sand
9 to 26	Sand and gravel, dry
26 to 59	Sand and gravel, clean and heaving
59 to 63	Sand, black, tight; no water

Well SC01305516CDCD1 004, Dillingham Elementary School

Sand and gravel, coarse; water

[Log by Fortune Enterprises]

0 to 18	Brown dirt and clay
18 to 31	Sand and gravel
31 to 52	Gravel
52 to 58	Sand and small gravel
58 to 70	Large gravel

Well SC01305517CDCA1 003, Jim Timmerman [Log by Jim's Drilling]

0 to 10.5	Topsoil and red clay
10.5 to 21	Red clay
21 to 31.5	Red clay; into gravel and rock at 25.5 ft;
	1 ft of blue clay at 24 ft
31.5 to 36.8	Gravel and rock to 1.5 in.; some water at 35 ft
36.8 to 42	Gravel and rock to 2 in.; small amount of coarse
	sand

Depth below land surface,

in feet Lithologic description

Well SC01305521ABAC1 002, City of Dillingham No. 1

[Log by Robert Plier]

1 to 1.5	Tundra
1.5 to 12	Sand
12 to 32	Blue clay
32 to 48	Blue clay and gravel
48 to 79	Blue clay
79 to 87	Blue clay and gravel
87 to 90	Fine sand and gravel, water
90 to 95	Coarser sand and gravel
95 to 100	Very fine sand and silt
100 to 102	Coarse sand and gravel; heaving sand
102 to 110	Fine sand
110 to 116	Fine silt and sand; heaving sand
116 to 125	Dirty sand and gravel
125 to 127	Fine sand and gravel; some clay
127	Blue clay with streaks of brown

Well SC01305521ABBD1 001, City of Dillingham PHS No. 2

[Log by U.S. Public Health Service]

```
0 to 2
                 Muskeg
2 to 27
                 Yellow clay and silt
27 to 30
                 Yellow silt and sand; small rock
30 to 35
                 Yellow silt and fine sand; water
35 to 46
                 Yellow clay
46 to 48
                 Yellow sand and silt
48 to 52
                  Sand and gravel; water (static water level is 11 ft)
52 to 54
                 Blue clay
54 to 72
                  Gravel and big rocks; dry
72 to 85
                  Coarse gravel and rocks; water (well screened from 75 to 85 ft)
85 to 88
                  Blue clay
```

Well SC01305521ABBD2 001, City of Dillingham, Main well

[Log by U.S. Public Health Service]

0 to 2	Muskeg
2 to 27	Yellow clay and silt
27 to 30	Yellow silt and sand; small rock
30 to 35	Yellow silt and fine sand; water
35 to 46	Yellow clay
46 to 48	Yellow sand and silt
48 to 52	Sand and gravel; water
52 to 54	Blue clay
54 to 72	Gravel and big rock
72 to 85	Coarse gravel and rock (well screened from 75 to 85 ft)
85 to 88	Blue clay

Table 5.--Lithologic descriptions from drillers' logs of selected wells--Continued

Depth below land surface, in feet Lithologic description

Well SC01305521ABBD3 001, City of Dillingham, abandoned

[Log by U.S. Public Health Service]

0 to 2	Muskeg
2 to 27	Yellow clay and silt
27 to 30	Yellow silt and sand; small rocks
30 to 35	Yellow silt and fine sand; water
35 to 46	Yellow clay
46 to 48	Yellow sand and silt
48 to 52	Sand and gravel; water (static water level is 11 ft)
52 to 54	Blue clay
54 to 72	Gravel and big rock; dry
72 to 85	Coarse gravel and rocks; water

Well SC01305521BABD1 006, City of Dillingham, PHS No. 1

[Log by U.S. Public Health Service]

0 to 8	Brown muskeg
8 to 12	Blue silt and sand
12 to 30	Blue clay
30 to 47	Blue clay and sand; silt
47 to 55	Sand and gravel
55 to 93	Blue clay
93 to 118	Fine sand (well screened from 93 to 118 ft)

Well SC01305521BABD2 006, City of Dillingham No. 3 [Log by City of Dillingham]

Tundra
Sand and water
Clay, sand and water
Pea gravel
Grave1
Gravel and sand
Gravel and clay
Clay
Clay and sand
Clay and gravel
Sand and gravel (well has 20 ft of perforations)

Depth below land surface,

in feet

Lithologic description

Well SC01305521BBCD1 013, Peter Pan Seafoods, boat harbor

[Log by Jim's Drilling]

0 to 11	Topsoil
11 to 21.5	Sand
21.5 to 32	Sand and blue clay
32 to 63.7	Blue clay
63.7 to 74.2	Silt and fine sand
74.2 to 84.8	Compacted silt
84.8 to 95.3	Compacted silt and blue clay
95.3 to 105.8	Silt, blue clay, and rock
105.8 to 116.3	Hard blue clay and rock
116.3 to 127	Hard blue clay, rock, and compacted silt
127 to 148.1	Compacted silt
148.1 to 158.7	Compacted silt and blue clay
158.7 to 179.7	Hard blue clay, gravel and rock
179.7 to 190.2	Blue and brown clay and rock

Well SC01305614BAAD2 001, Don Darden

Clay

Silt and muck

[Log by Jim's Drilling]

190.2 to 196

196 to 205

0 to 10	Topsoil
10 to 15	Clay, gravel, rocks, and sand
15 to 30	Gravel, rocks, and some sand
30 to 35	Gravel, rocks, some sand, and white clay
35 to 41	White chalk clay, rocks, gravel, and sand; water

Well SC01305614DBBB1 005, Mel Abrams

[Log by Jim's Drilling]

0 to 20	Red clay
20 to 25	Gravel, rock, and sand
25 to 30	Gravel, rock, and sand; water
30 to 35	Gravel and rock

Well SC01305636BDDD1 001, John Timmerman

[Log by Jim's	Drilling]
0 to 10.5	Topsoil and clay
10.5 to 21	Sand and silt
21 to 26.3	Sand and clay
26.3 to 31.5	Mud
31.5 to 36.8	Silt and clay
36.8 to 42	Mud and gravel
42 to 47.3	Gravel and rocks: water

Local number, SC01305516CDAB1 001, Dillingham PHS No. 3

LOCATION.--Lat 59°02'08", long 158°27'43", Hydrologic unit 19040002, northwest of PHS quonset hut, Second Avenue,

Dillingham. Owner: City of Dillingham.

AQUIFER.—Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.—Dismater 8 in, depth 70 ft, open end.

INSTRUMENTATION .-- Intermittent measurements

DATUM, -- Altitude of land surface is 47.56 ft above National Geodetic Vertical Datum of 1929 (determined from levels survey).

PERIOD OF RECORD .-- 1978 to 1986.

EXTREMES FOR PERIOD OF RECORD .-- Highest weter level, 19.76 ft below land-surface datum, April 16, 1979;

lowest, 24.71 ft below land-surface detum, June 30, 1986.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
		NOV 28, 1979	21.77	JAN 18, 1981	23.33
JUN 07, 1979	23.12	JUN 04, 1980	22.40	MAR 10, 1981	22.82
JUN 27, 1979	24.18	JUN 24, 1980	22.94	OCT 07, 1982	19.90
NOV 27, 1979	21.72	SEP 24, 1980	22.93	SEP 24, 1985 JUN 30, 1986	23.05
	MAY 08, 1979 JUN 07, 1979 JUN 27, 1979		DATE LEVEL DATE MAY 08, 1979 21.48 NOV 28, 1979 JUN 07, 1979 23.12 JUN 04, 1980 JUN 27, 1979 24.18 JUN 24, 1980	DATE LEVEL DATE LEVEL MAY 08, 1979 21.48 NOV 28, 1979 21.77 JUN 07, 1979 23.12 JUN 04, 1980 22.40 JUN 27, 1979 24.18 JUN 24, 1980 22.94	DATE LEVEL DATE LEVEL DATE MAY OB, 1979 21.48 MOV 28, 1979 21.77 JAN 18, 1981 JUN 07, 1979 23.12 JUN 04, 1980 22.40 MAR 10, 1981 JUN 27, 1979 24.18 JUN 24, 1980 22.94 OCT 07, 1982 NOV 27, 1979 21.72 SEP 24, 1980 22.93 SEP 24, 1985

Local number, SC01305516CDCD1 004, Dillingham Elamentary School

LOCATION .-- Let 59°02'39", long 158°27'48", Hydrologic unit 19040002, eouthwest of Elementary School, Dillingham.

Owner: City of Dillingham.

AQUIFER. — Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS. — Diameter 6 in, depth 72 ft.

INSTRUMENTATION .-- Intermittent measurements.

DATUM, --Altitude of land surface is 55.52 ft above National Geodetic Vertical Datum of 1929 (determined from levels survey). PERIOD OF RECORD. -- 1985 to 1986.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 30.75 ft below land-surface datum, September 24, 1985; lowest, 32.62 ft below land-surface datum, July 16, 1986.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
SEP 24, 1985	30.75	JUN 30, 1986	32.19	JUL 16, 1986	32.62

Local number, SC01305516CDDD1 005, Dillingham Courthouse Well

LOCATION .-- Lat 59°02'39", long 158°27'35", Hydrologic unit 19040002, about 200 ft east of the State court building,

near the intersection of 2nd Avenue and the old airstrip, Dillingham. Owner: City of Dillingham. AQUIFER.—Sand and gravel of the Queternary System.
WELL CHARACTERISTICS.—Diameter 6 in, depth 90 ft, acreened.

67.57

INSTRUMENTATION .-- Intermittant measurements with steel tape.

DATUM .-- Altitude of land surface is 72.92 ft above National Geodetic Vertical Datum of 1929 (determined from levels survey). PERIOD OF RECORD .-- 1985 to 1986.

WATER WATER DATE LEVEL DATE SEP 24, 1985 48.20 JUN 30, 1986

Local number, SC01305521ABAC1 002, Dillingham City Well No. 1

LOCATION. -- Lat 59°02'30", long 158°27'18", Hydrologic unit 19040002, First Avenue Eest and D street, Dillingham.

Owner: City of Dillingham.
AQUIFER.--Sand and gravel of the Quaternary System

WELL CHARACTERISTICS .-- Diameter 6 in, depth 127.5 ft, finish unknown.

INSTRUMENTATION . -- Intermittent measurements.

DATUM .-- Altitude of land surface is 83.72 ft above National Geodetic Vertical Datum of 1929 (determined from levels survey).

PERIOD OF RECORD. -- 1985 to 1986.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 62.20 ft below lend-surface detum, September 24, 1985; lowest, 66.00 ft below land-surface datum, July 17, 1986.

WATER WATER DATE DATE LEVEL LEVEL JUL 17, 1986 66.00 SEP 24, 1985 62,20

Local number, SC01305521ABBD1 001, Dillingham PHS No. 2

WTR YR 1984

HIGH 70.80 APR 2

LOCATION.—Lat 59°02'34", long 158°27'25", Hydrologic unit 19040002, Central Avanus near water-treatment plant,
Dillingham. Owner: City of Dillingham.
AQUIFER.—Sand and gravel of the Quaternary System.
WELL CRARACTERISTICS.—Diameter 6 in, depth 88 ft, screened 75 to 85 ft.
INSTRUMENTATION.—Continuous strip—chert recorder.
DATUM.—Altitude of lend surface is 84.93 ft above National Geodatic Vertical Datum of 1929 (determined from levels eurvey).
PERIOD OF RECORD.—1978 to 1987.
EXTREMES FOR PERIOD OF RECORD.—Highest water level, 68.30 ft below land-surface detum, Jen. 5, 1979;
lowest, 75.92 ft below land-surface detum, July 7, 1979.
REMARKS.—Each water-level value for this well that is lieted in the teble below is the highest water level recorded during that day. However, the annual low water level lieted below each year's dats is the lowest water level recorded during that year. that y

DAY 5 10 15 20 25 EOM WTR YR 191 DAY DAY 5 10 15 20 25 EOM DAY 5 10 25 EOM DAY	OCT 69.84 69.71	NOV 69.60 69.68 69.92 70.05 69.55 69.53 HIGH	DEC 69.15 69.18 69.06 68.90 68.40 68.30 JAI EVEL (FEET DEC 69.85 70.15 70.35 70.95 71.17	JAN 68.30 69.03 68.80 68.83 68.82 69.33	FEB 69.39 70.99 70.85 71.32 71.86 71.76 LOW LAND SURFA MIN FEB 72.25	MAR 71.84 71.56 71.86 71.86 71.08 71.40 75.92 CE), WATEIMUM VALU	APR 71.41 71.46 70.37 69.46 69.41 69.64 EJUL 7 CR YEAR OO	MAY 70.03 70.21 70.12 70.46 70.68 70.32	JUN 70.25 70.00 70.12 70.86 71.33 72.26	JUL 73.44 73.09 73.09 73.42 72.85 72.53	AUG 72.24 71.93 71.46 70.99 70.86 70.60	SEP 70.60 70.85 70.38 70.25 69.89 69.86
5 10 15 20 25 EOM WTR YR 197 DAY 5 10 15 20 25 EOM WTR YR 191 DAY 5 10 15 20 25 EOM WTR YR 191 DAY 5 10 15 20 25 EOM 25 25 E	70.66 70.36 69.84 779 OCT 69.84 69.71	69.60 69.68 69.92 70.05 69.53 HIGH WATER L NOV	69.15 69.18 69.06 68.90 68.40 68.30 JAI EVEL (FEET DEC 69.85 70.15 70.35 70.95 71.17	68.30 69.03 68.80 68.83 68.82 69.33 N 5 BELOW JAN 70.88 71.05	69.39 70.99 70.85 71.32 71.86 71.76 LOW LAND SURFA MIN FEB	71.84 71.56 71.60 71.86 71.08 71.40 75.92 CE), WATE IMUM VALU	71.41 71.46 70.37 69.46 69.41 69.64 ULL 7	70.03 70.21 70.12 70.16 70.46 70.32	70.25 70.00 70.12 70.86 71.33 72.26	73.44 73.09 73.09 73.42 72.85 72.53	72.24 71.93 71.46 70.99 70.86 70.60	70.60 70.85 70.38 70.25 69.89
DAY DAY DAY DAY DAY DAY DAY DAY	70.66 70.36 69.84 179 OCT 69.84 69.71	69.68 69.92 70.05 69.55 69.53 HIGH WATER L NOV	69.18 69.06 68.90 68.40 68.30 JAI EVEL (FEET DEC 69.85 70.15 70.35 70.95 71.17	69.03 68.80 68.83 68.82 69.33 N 5 BELOW JAN 70.88 71.05	70.99 70.85 71.32 71.86 71.76 LOW LAND SURFA HIN FEB 72.25	71.56 71.60 71.86 71.08 71.40 75.92 CE), WATE IMUM VALU	71.46 70.37 69.46 69.41 69.64 JUL 7 CR YEAR OCIES	70.21 70.12 70.46 70.68 70.32	70.00 70.12 70.86 71.33 72.26	73.09 73.09 73.42 72.85 72.53	71.93 71.46 70.99 70.86 70.60	70.85 70.38 70.25 69.89
DAY DAY DAY DAY DAY DAY DAY DAY	70.66 70.36 69.84 079 OCT 69.84 69.71	69.68 69.92 70.05 69.55 69.53 HIGH WATER L NOV	69.18 69.06 68.90 68.40 68.30 JAI EVEL (FEET DEC 69.85 70.15 70.35 70.95 71.17	68.80 68.83 68.82 69.33 N 5 BELOW JAN 70.88 71.05	70.99 70.85 71.32 71.86 71.76 LOW LAND SURFA HIN FEB 72.25	71.56 71.60 71.86 71.08 71.40 75.92 CE), WATE IMUM VALU	71.46 70.37 69.46 69.41 69.64 JUL 7 CR YEAR OCIES	70.21 70.12 70.46 70.68 70.32	70.00 70.12 70.86 71.33 72.26	73.09 73.09 73.42 72.85 72.53	71.93 71.46 70.99 70.86 70.60	70.85 70.38 70.25 69.89
DAY DAY DAY DAY DAY DAY DAY DAY	70.66 70.36 69.84 779 OCT 69.84 69.71	70.05 69.55 69.53 HIGH WATER L NOV	68.90 68.40 68.30 JAI EVEL (FEET DEC 69.85 70.15 70.35 70.95 71.17	68.83 68.82 69.33 N 5 BELOW JAN 70.88 71.05	71.32 71.86 71.76 LOW LAND SURFA MIN FEB 72.25	71.86 71.08 71.40 75.92 CE), WATE IHUM VALU	69.46 69.41 69.64 JUL 7 R YEAR OCIES	70.46 70.68 70.32 TOBER 197	70.86 71.33 72.26	73.42 72.85 72.53	71.46 70.99 70.86 70.60	70.38 70.25 69.89
DAY 5 10 20 25 EOH WTR YR 191 DAY 5 10 15 20 25 EOH WTR YR 191 DAY 5 10 15 20 20 25 20 25 20 20 20 25 20 20 20 20 20 20 20 20 20 20 20 20 20	70.36 69.84 779 OCT 69.84 69.71	69.55 69.53 HIGH WATER L NOV	68.40 68.30 JAI EVEL (FEET DEC 69.85 70.15 70.35 70.35 70.95 71.17	68.82 69.33 N 5 BELOW JAN 70.88 71.05	71.86 71.76 LOW LAND SURFA MIN FEB 72.25	71.08 71.40 75.92 CE), WATE IMUM VALU	69.41 69.64 JUL 7 CR YEAR OCIES	70.68 70.32 TOBER 197	71.33 72.26	72.85 72.53	70.86 70.60	69.89
DAY 5 10 6 15 20 25 EOM WTR YR 191 DAY 5 10 15 20 25 EOM DAY 25 20 25 EOM DAY 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	0CT 69.84 69.71	69.53 HIGH WATER L NOV 69.93	68.40 68.30 JAI EVEL (FEET DEC 69.85 70.15 70.35 70.35 70.95 71.17	69.33 N 5 BELOW JAN 70.88 71.05	71.76 LOW LAND SURFA MIN FEB 72.25	71.40 75.92 CE), WATE IMUM VALU MAR	69.64 JUL 7 ER YEAR OCIES	70.32 TOBER 197	72.26	72.53	70.60	
DAY 5 (6) 10 (6) 15 (20) 25 EOM WTR YR 191 DAY 5 (10) 15 (20) 25 (20) 25 (20)	OCT 69.84 69.71	NOV	68.30 JAI EVEL (FEET DEC 69.85 70.15 70.35 70.95 71.17	JAN 70.88 71.05	LOW LAND SURFA MIN FEB 72.25	75.92 CE), WATE IMUM VALU MAR	JUL 7 R YEAR OC IES	TOBER 197				69.86
DAY 5 0 10 0 15 20 25 EOM WTR YR 191 DAY 5 10 15 20 25	OCT 69.84 69.71	NOV	DEC 69.85 70.15 70.35 70.95 71.17	JAN 70.88 71.05	LAND SURFA MIN FEB 72.25	CE), WATE IMUM VALU MAR	R YEAR OC IES		9 TO SEPT	EMBER 198	0	
5 10 15 20 25 EOH WTR YR 191 DAY 5 10 15 20 25 25 25 20 25	69.84 69.71 	NOV	DEC 69.85 70.15 70.35 70.95 71.17	JAN 70.88 71.05	MIN FEB 72.25	IMUM VALU MAR	TES		9 TO SEPT	EMBER 198	10	
5 10 15 20 25 EOH WTR YR 191 DAY 5 10 15 20 25 25 25 20 25	69.84 69.71 	69.93	69.85 70.15 70.35 70.95 71.17	70.88 71.05	72.25		APR					
10 (1) 15 (2) 20 25 EOM WTR YR 191 DAY 5 10 15 20 25	69.71	69.93	70.15 70.35 70.95 71.17	71.05				MAY	JUN	JUL	AUG	SEP
10 (1) 15 (2) 20 25 EOM WTR YR 191 DAY 5 10 15 20 25	69.71	69.93	70.15 70.35 70.95 71.17	71.05		71 76		71 00	71 60			
15 20 25 EOM WTR YR 198 DAY 5 10 15 20 25		69.93	70.35 70.95 71.17		71 00	71.36	71.27	71.38	71.60	72.02	73.79	72.01
20 25 EOM WTR YR 191 DAY 5 10 15 20 25		69.93	70.95 71.17		71.89	71.17	71.17	71.80	71.44	71.97	73.93	71.81
25 EOH WTR YR 191 DAY 5 10 15 20		69.93	71.17		71.87	71.51	71.00	71.17	71.56	71.91	72.96	71.55
DAY 5 10 15 20 25		69. 9 3		71.54	71.49	72.27	71.67	70.88	72.13	72.00	73.16	71.07
DAY 5 10 15 20 25	80		70.54	71.79 72.05	71.03 71.32	71.52 71.28	71.43 71.54	70.68 71.65	72.33 72.14	72.83 73.76	72.23 72.39	71.40 70.93
5 10 15 20 25			69.15 0		LOW		5 AUG 13				, 1, 1, 1	
5 10 15 20 25		WATER L	EVEL (FEET	BELOW	LAND SURFA			TOBER 198	O TO SEPT	EMBER 198	31	
5 10 15 20 25					MIN	THUM VALU	TES					
10 15 20 25	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
15 20 25	70.52	70.82	70.33	71.80		72.35	71.69	71.69				72.64
20 25	70.61	70.18	71.41	71.17		73.93	71.83	71.99			75.11	72.76
25	70.64	70.28		71.36		72.65	71.74	72.51	72.87		73.46	72.54
	70.65	70.73	72.48	70.81		72.72	71.64	71.97			73.56	72.53
EOM (70.45 69.87	69.96 70.20	72.17	71.42 70.94		72.29 71.82	71.62 71.93	71.83			73.78 73.02	72.28 72.08
WTR YR 19			69.81 NOV		LOW	75.14					73.02	72.00
41K 1K 13	,01				LAND SURFA			TORER 198	ון דים פרודי	TEMBER 10	12	
			(1201	2	MIN	IMUM VALI	JES	JODER 190	I TO BEF	CHUER 19	,,	
DAY	OCT											
	72.17											
	72.14											
15		NO DATA	AVAILABLE	FOR R	EMAINDER OF	WATER Y	EAR.					
20												
25 EOM												
WIR YR 19		RIGH	71.90 0	CT 1	LOW	. 72 (97 OCT 9					
*** IK 17	,,,				LAND SURFA			TORED 100	13 TC CED	PEMBED 10:		
		WALLER L		D250#		IIMUM VAL		LIUBER 190	J IC SEF	CADER 19	•	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5				71.80		73.40	71.90	71.90				
10					73.10	73.50	72.40	71.90				72.21
15			71.10	72.00		73.20	71.80	72.60				71.92
20			71.20	72.40		73.00	71.40	72.50				71.57
25			71.40	72.70		71.70	71.20	73.30				71.58
EOM			71.60	72.60	73.30	71.20	71.30	74.70				71.20

75.16 JUN 2

LOW

					HIN	IMUM VALU	es					
YAC	OCT	MOA	DEC	JAN	PEB	MAR	APR	YAY	Jun	JUL	AUG	SEP
5	70.84	70.75	70.86	70.74	73.12			70.93	72.78	74.34	72.36	71.96
10	71.14	70.82	70.61	71.94	71.90	72.44	71.69	70.69	72.65	74.38	71.84	72.36
15	70.90	70.92	70.90	73.26		72.22		70.55	71.56	74.66	72.20	71.28
20	70.97	70.80	71.03	73.24		72.25	71.79	70.58	72.86	73.43	71.59	70.52
25	70.95	71.33	70.89	73.41			71.70	70.87	73.94	72.85	71.03	71.94
EOM	70.84	71.04	71.02	73.30			71.28	73.16	74.09	72.50	70.63	72.19
WIR YI	R 1985	HIGH	70.46 MAY	12	LOW	74.75 J	VL 15-16					
		WATER LE	VEI. (FEET	below lan), WATER IMUM VALU		BER 1985	TO SEPTE	BER 1986		
DAY	OCT	WATER LE	EVEI. (FEET	Below Lan Jan				BER 1985 MAY	TO SEPTEM	BER 1986 Jul	AUG	SEI
DAY 5	ост 72.76				MIN	IMUM VALU	ES				A UG 72.27	
		NOA	DEC	JAN	MIN Pe b	IMUM VALU MAR	APR	YAM	JUN	JUL.		71.90
5	72.76	NOV 72.91	DEC 69.53	JAN 69.78	MIN FEB 72.50	MAR 72.26	APR 71.93	MAY 73.36	JUN 72.68	JUL. 73.80	72.27	71.90 72.92
5 10	72.76 71.91	NOV 72.91 72.04	DEC 69.53 70.27	JAN 69.78 69.60	FEB 72.50 71.44	MAR 72.26 72.14	APR 71.93 72.13	MAY 73.36 72.84	JUN 72.68 72.56	JUL. 73.80 73.50	72.27 71.68	71.90 72.92 72.94
5 10 15	72.76 71.91 72.41	NOV 72.91 72.04 70.50	DEC 69.53 70.27 70.09	JAN 69.78 69.60 69.79	FEB 72.50 71.44 71.36	MAR 72.26 72.14 72.47	APR 71.93 72.13 72.15	MAY 73.36 72.84 71.86	JUN 72.68 72.56 72.87	JUL. 73.80 73.50 73.32	72.27 71.68 70.95	71.90 72.92 72.94 71.86
10 15 20	72.76 71.91 72.41 71.49	NOV 72.91 72.04 70.50 70.00	DEC 69.53 70.27 70.09 69.49	JAN 69.78 69.60 69.79 69.88	72.50 71.44 71.36 71.29	MAR 72.26 72.14 72.47 72.10	APR 71.93 72.13 72.15 72.33	MAY 73.36 72.84 71.86 73.41	JUN 72.68 72.56 72.87 73.66	JUL. 73.80 73.50 73.32 73.71	72.27 71.68 70.95 70.52	71.90 72.92 72.94 71.86 72.56 71.88

Local number, SC01305521BABD2 006, Dillingham City Well No. 3

LOCATION.--Lat 59°02'31", long 158°27'54", Hydrologic unit 19040002, about 250 ft west of City of Dillingham's
Public Works building, Dillingham. Owner: City of Dillingham.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 8 in, depth 115 ft.

INSTRUMENTATION.--Intermittent measurements.

DATUM.--Altitude of land surface is 34.78 ft above National Geodetic Vertical Detum of 1929 (determined from levels survey).

PERIOD OF RECORD.--1978 to 1981, 1985 to 1986.

EXTREMES FOR PERIOD OF RECORD.--Highest water lavel, 8.08 ft below land-surface datum, January 11,1979;

lowest, 16.08 ft below land-surface datum, April 16, 1979.

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JUL 14, 1978	12.45	JUN 07, 1979	10.00	APR 10, 1980	9.44	JAN 08, 1981	10.20
OCT 20, 1978	9.63	JUN 27, 1979	11.80	JUN 04, 1980	9.43	MAR 10, 1981	9.63
JAN 11, 1979	8.08	NOV 27, 1979	8.65	JUN 24, 1980	10.18	SEP 24, 1985	10.03
APR 16, 1979	16.08	JAN 30, 1980	9.88	SEP 24, 1980	9.30	JUN 30, 1986	11.44
						JUL 17, 1986	18.88 Pumping

Locel number, SC01305521BBCD1 013. Peter Pan Seafoods -- Boat harbor well

LOCATION. -- Lat 59°02'27", long 158°28'16", Hydrologic unit 19040002, East of Dillingham's small-boat herbor, Dillingham.
Owner: Peter Pan Seafoods.

AQUIFER. --Clay, sand and grevel of the Quaternary System.
WELL CHARACTERISTICS.--Diameter 10 in, depth 190 ft, finish unknown.
INSTRUMENTATION.--Intermittent measurements.

DATUM.—Altitude of land surface is 27.79 ft above National Geodetic Vertical Datum of 1929 (determined from levels survey). PERIOD OF RECORD.—1979 to 1982, 1985 to 1986. EXTREMES FOR PERIOD OF RECORD.—Highest water level, 4.02 ft below land-surface detum, September 25, 1985; lowest, 8.10 ft below land-surface datum, October 7, 1982.

WATER WATER WATER WATER DATE LEVEL. DATE LEVEL DATE LEVEL DATE LEVEL JUN 06, 1979 6.41 APR 10, 1980 6.10 SEP 24, 1980 6.05 JUL 08, 1981 5.96 JUN 27, 1979 NOV 28, 1979 JUN 03, 1980 JUN 24, 1980 6.03 5.98 JAN 08, 1981 MAR 10, 1981 6.26 6.05 OCT 07, 1982 8.10 6.12 SEP 25, 1985 JUL 17, 1986 6.09 4.02 5.78

Figure 3.-- Water levels in well PHS No. 2 and total pumpage from three public-supply wells.

On September 24, 1985, water levels in seven wells in the Dillingham townsite area (PHS No. 3, elementary school, courthouse, City Nos. 1 and 3, PHS No. 1, and boat harbor) were between 21 and 25 ft above sea level, whereas the water level in well PHS No. 2, located about 10 ft from a public-supply well that was pumping intermittently, was about 13 ft above sea level. On June 30, July 16, and July 17, 1986, static (nonpumping) water levels in wells PHS Nos. 2 and 3, City Nos. 1 and 3, and elementary school were less than 4 ft lower than measurements made during the previous September, whereas the static water level in the courthouse well was 19.37 ft lower. On July 17, 1986, well City No. 3 was pumping, and its water level was 15.9 ft above sea level.

Ground-water levels that are near or below sea level are a cause for concern because increased pumping rates might produce a greater drawdown and possibly could induce saltwater from the estuary to migrate into aquifers that currently (1986) yield freshwater. However, the season of maximum ground-water use in midsummer coincides with high stream discharge (table 2) and great dilution of the estuary by freshwater. Thus, if pumping conditions remain at current levels (pumping rates that are about 100,000 gal/d during most of the year and a peak rate about 1 million gal/d that lasts only a few weeks), the threat of saltwater migrating inland to the city's public-supply wells seems unlikely. Periodically, however, ground-water levels need to be measured and water samples need to be collected and analyzed for specific conductance and concentrations of dissolved chloride to verify that saltwater is not migrating into aquifers used for public supply.

Nine samples of ground water from the Dillingham area have been analyzed for chemical and physical quality by the Geological Survey (table 7). Specific conductance, a commonly used indicator of dissolved-solids content, ranged from 65 to 700 µS/cm; this indicates that the water has a dissolved-solids content ranging from about 45 to about 500 mg/L. Less than 500 mg/L dissolved solids is desirable for domestic and most commercial and industrial uses (U.S. Environmental Protection Agency, 1977).

Chloride is present in elevated concentrations in seawater, and its chemical behavior is relatively nonreactive; thus chloride is a good indicator of salt-water intrusion. Few chloride analyses are available. In April 1979, water from well City No. 3 had a chloride concentration of 3.7 mg/L, and water from an old well at Peter Pan Seafoods had a chloride concentration of 21 mg/L. CH2M-Hill (written commun., 1983) reports that water collected on January 30, 1974 from well City No. 1 had a chloride concentration of 10 mg/L, and water collected on November 14 from well PHS No. 3 had a concentration of 6 mg/L. Water with chloride concentrations less than 250 mg/L is suitable for most domestic and industrial water uses (U.S. Environmental Protection Agency, 1977); high concentrations of chloride increase the corrosiveness of water and, in combination with sodium, give water a salty taste.

On the basis of accounts of the water's taste and staining properties, many wells in the Dillingham area are reported to yield water that contains undesirable concentrations of iron and manganese. Samples from only two wells were analyzed for iron and manganese (table 7). Water from the "main" public supply well has a high concentration of manganese, $170~\mu g/L$, and well City No. 3 has high concentrations of iron (550 and 870 $\mu g/L$) and manganese (1,200 $\mu g/L$). Water with

Table 7.--Major chemical constituents and physical characteristics of ground water, 1979

[Analyses by U.S. Geological Survsy; µS/cm, microsiemens per centimeter at 25°C; mg/L, milligrams per liter; µg/L, micrograms per liter.]

Well owner and number	Date of sample	Spe- cific con- duc- tance (µS/cm)	pH (stand- ard units)	Temper- ature (deg C)	Calcium dis- solved (mg/L as Ca)	Magne , sium, dis- solve (mg/L as Mg	Sodiu dis- d solve (mg/l	dis- ed solve (mg/l	linii field ed (mg/l L as	ty Sulfate dis- L solved (mg/L
Wood River Community Spring: SC01305510BBAAl Spring	06-06-79	90	5.5	5.0					18	
Jim Timmerman:										
SC01305517CDCA1 003 Wien Air:	06-27-79	82	6.5	7.0					34	
SC01305518DCDAl 001 City of Dillingham, Main wel	06-04-79	212	5.8	6.5					108	
SC01305521ABBD2 001	04-18-79	142	6.0		14	5.0	8.6	1.5	55	5.8
City of Dillingham No. 3: SCO1305521BABD2 006	04-16-79	270	7.4	3.5	24	11	11	8.2	99	6.7
	06-27-79	240		3.0						
Peter Pan Seafoods - Old wel SC01305521BACC1 010	06-27-79	700	7.9	4.0					193	
Don Darden: SC01305614BAAD2 001	06-28-79	65	6.1	9.0					22	
Mel Abrams: SC01305614DBBB1 005	06-28-79	130	6.4	12.0			***		62	
John Timmerman: SC01305636BDDD1 001	06-04-79	117	6.7	4.0					64	
		Chlo ride			lica, Su	m of N	itrogen	DL		
Well number	Date of sample	dis- solv	dia ed sol L (m		lved tu g/L di so	nsti- N ents, d s- s lved (O2+NO3 His- Holved mg/L	Phos- phorus, dis- solved (mg/L as P)	Iron, dis- solved (µg/L as Fe)	Manga- nese, dis- solved (µg/L as Mn)
Well number SC01305510BBAA1 Spri	of sample	dis- solv (mg/ as C	dia ed sol L (m	s- sol lved (ma g/L as	lved tu g/L di so	nsti- N ents, d s- s lved (O2+NO3 is- olved mg/L	phorus, dis- solved (mg/L	dis- solved (µg/L	nese, dis- solved (µg/L
	of sample	dis- solv (mg/ as C	dia ed sol L (m	s- sol lved (ma g/L as	lved tu g/L di so O ₂) (m	nsti- N ents, d s- s lved (O2+NO3 lis- colved mg/L us N)	phorus, dis- solved (mg/L as P)	dis- solved (µg/L	nese, dis- solved (µg/L
SC01305510BBAA1 Spri	of sample ng 06-06-	dis- solv (mg/ as C	dia ed sol L (mg 1) as	i- sollved (mgg/L as	lved tu g/L di so O2) (m	nsti- Nents, dents, den	(02+NO3 lis- colved (mg/L (s N)	phorus, dis- solved (mg/L as P)	dis- solved (µg/L as Fe)	nese, dis- solved (µg/L as Mn)
SC01305510BBAA1 Spri	of sample .ng 06-06- 06-27-1	dis- solv (mg/ as C	dised solution (mg	s- solved (mg/L as F) Sid	ved tu g/L di so so m	nsti- Nents, dents, den	O2+NO3 116- 116- 116- 116- 116- 116- 116- 116	phorus, dis- solved (mg/L as P)	dis- solved (µg/L as Fe)	nese, dis- solved (µg/L as Mn)
SC01305510BBAA1 Spri SC01305517CDCA1 003 SC01305518DCDA1 001	of sample of sam	dis- solv (mg/ as C	dised soll (mg 1) as	s- solved (mg/L as F) S10	ved tu so 2 (m	nsti- Nents, dents, den	O2+NO3 118- 01ved mg/L s N) 0.58	phorus, dis- solved (mg/L as P)	dis- solved (µg/L as Fe)	nese, dis- solved (µg/L as Mn)
SC01305510BBAA1 Spri SC01305517CDCA1 003 SC01305518DCDA1 001 SC01305521ABBD2 001	of sample of sam	dis- solv (mg/ as C	dised soll (mg 1) as		ved tu ved tu di so o o o o o o o o o 	nsti- Nents, ds- slved (g/L) a 92	O2+NO3 118- 01ved mg/L 18 N) 0.58 0	phorus, dis- solved (mg/L as P)	dis- solved (µg/L as Fe)	nese, dis- solved (µg/L as Mn) 170 1,200
SC01305510BBAA1 Spri SC01305517CDCA1 003 SC01305518DCDA1 001 SC01305521ABBD2 000 SC01305521BABD2 006	of sample of sam	dis- solv (mg/ as C	dised solt (mg 1) as	Se	ved tug/L di	nsti- Nents, ds- slved (g/L) a 92	002+NO3 118- 118- 118- 118- 118- 118- 118- 118	phorus, dis- solved (mg/L as P)	dis- solved (µg/L as Fe) 50 870 550	nese, dis- solved (µg/L as Mn) 170 1,200 1,200
SC01305510BBAA1 Spri SC01305517CDCA1 003 SC01305518DCDA1 001 SC01305521ABBD2 006 SC01305521BABD2 006	of sample ng 06-06- 06-27- 04-18- 04-16- 06-27- 06-28-	dis- solv (mg/ as C	dised soll (mg 1) as 7 0.	Soluted mg mg mg mg mg mg mg m	ved tu v	nsti- Nents, ds- slved (g/L) a 92	O12+NO3 118- 01ved mg/L s N) 0.58 116	phorus, dis- solved (mg/L as P)	dis- solved (µg/L as Fe) 50 870 550	nese, dis- solved (µg/L as Mn) 170 1,200 1,200

concentrations less than 300 µg/L dissolved iron and 50 µg/L dissolved manganese is suitable for most domestic and industrial water uses (U.S. Environmental Protection Agency, 1977). Iron and manganese in higher concentrations precipitate when exposed to air and cause turbidity, and stain plumbing fixtures, laundry, and cooking utensils. Elevated concentrations of iron and manganese also impart noticeable tastes and colors to foods and drinks.

CH2M-Hill (written commun., 1983) reported that water collected on March 31, 1983 from well PHS No. 1 contained 50 $\mu g/L$ iron and 1,000 $\mu g/L$ manganese, whereas water from well PHS No. 3 contained less than 50 $\mu g/L$ iron and less than 50 $\mu g/L$ manganese. CH2M-Hill also reported that water collected on December 12, 1979 from the "main" well contained less than 50 $\mu g/L$ iron and 140 $\mu g/L$ manganese.

WATER USE

Almost all water used in Dillingham for domestic, commercial, and industrial uses is obtained from ground water. The City of Dillingham supplies water to about 150 residential and commercial buildings in the townsite area; residential, commercial, and industrial water users outside of the townsite area are dependent on private wells.

The city's water system is described in Wince-Corthell and Associates (1974), DOWL Engineers (1981), and CH2M-Hill (written commun., 1983). The community water-supply facilities consist of four wells, a 500,000-gallon and a 770,000-gallon storage tank, and distribution mains in the old townsite and Snag Point Sub-division, which is about 0.2 mi northeast of the townsite and contains about 35 homes. During 1986, the "main" well was set to begin pumping when water levels in the storage tanks reached a certain level. The courthouse, elementary school, and City No. 3 wells were turned on manually when more water was needed. At times in the past, wells PHS No. 2 and 3 have also been pumped to provide water to the city's system. Under current (1986) well, pump, and aquifer conditions, pumping rates for the city's wells are:

Well number	Well name	Pumping rate (gal/min)
SC01305521ABBD2 00:	l Main	70
SC01305516CDDD1 009	5 Courthouse	70
SC01305516CDCD1 004	4 Elementary school	L 50
SC01305521ABBD2 000		50

The quantity of water flowing into and out of the storage tanks is monitored intermittently by personnel from the city's Public Works Department. Water from the main, courthouse, and elementary school wells is treated with chlorine and floride before it flows into storage tanks. Water from well City No. 3 flows directly into water mains and is not metered. The combined quantity of water which

was pumped from three public-supply wells and the quantity of treated water used are shown in table 8.

The rate of water use varies thoughout the year. During most of the year, Dillingham's water system delivers to its customers about 100,000 gal/d, but during short periods in midsummer, it delivers up to 345,600 gal/d. The highest rate of water use is in midsummer; in some years the total midsummer use from both public and private supply in the townsite area is about 1 million gal/d. During 1986, peak water use from both public and private supply is estimated to be between 300,000 and 400,000 gal/d.

The processing of fish uses large amounts of water, but this use is highly seasonal. Kemp Pacific Fisheries uses water from the city's distribution system, and its use has been metered since April 1985. From June 25 through July 25, 1985, Kemp used about 89,500 gal/d, which was about half of the total water supplied by the system during that period. The quantity of water used during that period represents about half of the total amount of water used by Kemp during a year.

Peter Pan Seafoods, the largest fish-processing operation in the Dillingham area, uses water from privately owned wells located at the western edge of town. During the peak of the fish-processing season, late June through early July, Peter Pan Seafoods used about 800,000 gal/d in 1984 and about 600,000 gal/d in 1985. For most of the rest of the year, Peter Pan uses about 10,000 gal/d or less. In 1986, Peter Pan did not process fish "onshore", and, therefore, its water use was small.

WATER-RELATED PROBLEMS

In much of the Dillingham area, a potential for ground-water pollution is posed by a naturally high ground-water table and permeable geologic materials. These environmental conditions, combined with shallow (less than 40 ft deep) wells and seepage from septic-tank systems in areas not served by sewers, create a potential for pollutants to enter the ground-water system used for domestic supplies. A sewer system serves the townsite area, the Snag Point Subdivision, and the Windmill Hill area southeast of the airport; however, sewage is not treated and wastes are discharged directly into Nushagak River (DOWL Engineers, 1982). The discharge of seafood-processing wastes to the river is also a potential source of pollution.

Many low areas in and near Dillingham would be inundated during a large flood. DOWL Engineers (1982) and the Federal Emergency Management Agency (1982) delineate areas that would be inundated by a flood with a frequency of approximately 100 years based on flood hazard work performed by the U.S. Army Corps of Engineers. The extent of potential property damage and danger to lives would, of course, increase with increasing development in flood plains of streams unless preventative measures were taken.

Table 8.--Water use, 1981-86

[Intermittent flow-meter readings were supplied by the City of Dillingham's Public Works Department; values in gallons; u, value unknown]

		Total mon	Total monthly and mean		ly pumpage	of the mai	n, element	monthly pumpage of the main, elementary school, and courthouse wells	and cour	rthouse wel	118	
Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept. Oct.	Oct.	Nov.	Dec.
1981	3	Þ	Þ	a	3	ב	מ	5	כ	Þ	ב	כ
1982	2,655,840	2,033,220	2,227,490	2,023,830	2,394,860	3,194,850	2,948,160	2,655,840 2,033,220 2,227,490 2,023,830 2,394,860 3,194,850 2,948,160 2,169,330 2,114,820 2,433,450 u	,114,820	2,433,450	2	Þ
1983		2.542.350	1,715,830	2,759,510	2,010,650	2,781,530	1,967,840	1,376,580 2	117,590	2,264,790	Þ	2
1984	. 5	מ	3,804,680	3,385,300	3,915,380	3,958,140	4,580,570	5,463,210 3	,053,020	2,083,890	2,743,820	2,862,100
1985	2,633,700	3,367,720	3,926,040	3,722,590	3,949,090	5,688,520	6,180,620	3,458,440 2	,723,510	2,690,220	2,909,060	2,561,400
1986	2,823,990	3,172,750	3,317,900	3,401,600	5,045,400	5,328,500	4,979,190	1986 2,823,990 3,172,750 3,317,900 3,401,600 5,045,400 5,328,500 4,979,190 2,423,919 2,245,380 3,026,560 u u	,245,380	3,026,560	þ	, 3
Mean	3,704,510	2,779,010	2,998,388	3,058,566	3,463,076	4,190,308	4,131,276	Mean $\frac{2,704,510}{2,779,010}$ $\frac{2,998,388}{2,998,388}$ $\frac{3,058,566}{3,463,076}$ $\frac{4,190,308}{4,131,276}$ $\frac{2,978,296}{2,978,296}$ $\frac{2,450,864}{2,499,782}$ $\frac{2,826,440}{2,711,750}$,450,864	2,499,782	2,826,440	2,711,750

Monthly and mean monthly volumes of treated water supplied by the City of Dillingham

Dec.	055,300 u 789,100 159,100	334,500
Nov.	1981 u u u u u u u i,683,690 2,055,300 1982 2,423,300 1,802,300 1,940,200 1,702,800 1,914,00 2,456,100 1,241,100 1,241,100 2,588,300 2,225,800 u u instance in the contraction of the co	Mean 2,559,067 2,829,850 3,199,338 3,049,428 3,284,636 4,571,782 4,599,780 3,356,140 2,771,880 2,564,100 2,182,163 2,334,500
Sept. Oct.	2,225,800 2,684,800 2,770,700 2,060,400 3,078,800	2,564,100
Sept.	2,588,300 3,091,400 3,764,600 2,233,600 2,181,500	2,771,880
Aug.	u 1,241,100 4,359,300 5,443,500 3,195,700 2,541,100	3,356,140
July	1,926,100 4,375,700 3,663,900 7,524,900 5,508,300	4,599,780
June	2,456,100 2,817,600 5,290,100 5,609,000	4,571,782
Мау	u 1,981,400 1,740,000 4,327,400 3,792,000 4,582,380	3,284,636
Apr.	u 1,702,800 1,747,300 3,626,800 4,681,700 3,488,540	3,049,428
Mar.	1,940,200 2,084,200 4,053,900 4,437,900	3,199,338
Feb.	1,802,300 2,696,000 3,627,000	2,829,850
Jan.	2,423,300 u u 2,638,900	2,559,067
Year	1981 1982 1983 1984 1985 1986	Mean

SUMMARY

- Climatic and geologic conditions in the Bristol Bay area provide sufficient water for current levels of water use in Dillingham.
- The Wood and Nushagak Rivers have flows that are generally greatest in May through July and lowest January through April. Average discharge for the Nushagak River at Ekwok is 22,650 ft³/s and the average discharge for Wood River near Aleknagik is 4,824 ft³/s.
- Waters in the Wood and Nushagak Rivers have low concentrations of dissolved solids and suspended sediments.
- The specific conductance of water in the Wood-Nushagak estuary near Dillingham during a high tide in autumn was as great as 3,000 µS/cm. High tides in spring, when streamflow is low, would increase salinity to a much greater value in the estuary.
- An estimated 400 to 500 wells have been drilled in the Dillingham area. Wells range in depth from 20 to 213 ft and yield 5 to 225 gal/min. All water levels in wells measured during 1985-86 were above sea level.
- Ground water is generally suitable for drinking-water purposes, except for elevated concentrations of iron and manganese in some areas.
- Most of the water used for public supply is pumped from four wells. Water use from the city's water system is about 100,000 gal/d during most of the year and up to 345,600 gal/d during short periods in midsummer. In some years total water use in the Dillingham area during the peak of the fish-processing season is about 1 million gal/d, but such high usage is confined to a few weeks. Pumpage of ground water at these rates and durations probably does not cause saltwater to migrate inland to wells used for public supplies.
- Potential water-related problems in Dillingham include ground-water pollution by on-site sewage disposal in areas of high water table and flooding in low-lying areas.

REFERENCES CITED

- DOWL Engineers, 1982, Upper Bristol Bay Region community planning profiles, Dillingham: 2 sheets.
- Federal Emergency Management Agency, 1982, Flood insurance rate map, City of Dillingham, Alaska, Bristol Bay Division: Community-panel numbers 020041 0001-0020, panels 10 and 16-18.
- National Oceanic and Atmospheric Administration, 1979-85, Climatological data for Alaska, annual summary: various pagination.
- U.S. Environmental Protection Agency, 1977, Quality criteria for water, 1976: U.S. Government Printing Office, 256 p.
- U.S. Geological Survey, 1961-86, Water resources data for Alaska, water years 1960-85: U.S. Geological Survey Water-Data Reports (published annually).
- Wince-Corthell and Associates, 1974, City of Dillingham comprehensive water and sewer study: Anchorage, Wince-Corthell and Associates, 103 p.